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Abstract 
 

This paper deals with the identification of a generic Bouc-Wen hysteretic system. It 

utilizes the so-called Sawtooth Genetic Algorithm that combines variable population 

size and periodic partial reinitialization of the population. It is shown that, although 

the complexity of the problem is significant, the Sawtooth GA can rapidly provide 

very accurate results for engineering purposes. 

 

Keywords: Bouc-Wen, hysteretic systems, identification, parameter estimation, 

genetic algorithms. 

 

1  Introduction 
 

The Bouc-Wen hysteretic i.e. memory-dependent model is a versatile and efficient 

means to account for hysteretic phenomena. It was first introduced by Bouc [1] in 

1967, but it was Wen [2] in 1976 who extended the model and demonstrated its 

versatility by producing a variety of hysteretic patterns, which were enhanced later 

by Baber and Noori [14] to incorporate non-symmetric behaviour and degradation 

phenomena. 

 

From the mathematical view point it is a very concise model governed by a single 

non-linear differential equation that can be easily applied to several hysteretic 

phenomena in the fields of magnetism, electricity, materials and elasto-plasticity of 

solids. Examples include the response of R/C sections, steel sections, bolted 

connections, base isolators such as Lead Rubber Bearings (LRB), Friction Pendulum 

Systems (FPS) etc.  

 

The standard form of a Single-Degree-Of-Freedom Bouc-Wen model includes 

eight parameters that govern the size and shape of the hysteretic loops. It is shown 

that some plausible assumptions can reduce the number of parameters to six; 
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however, the parameters may increase if the model is extended to include other 

phenomena, such as strength deterioration, stiffness degradation and pinching. 

Estimation of these parameters is the objective of this present work. 

 

2  Bouc-Wen hysteretic model 
 

2.1 Formulation 
 

Considering a SDOF system, the restoring force can be written as: 

 

 ( ) ( ) ( ) ( )1
y

y

y

F
F t a u t a F z t

u
= ⋅ ⋅ + − ⋅ ⋅  (1) 

 

Where, 
y

F  is the yield force, 
y

u  is the yield displacement, a  is the ratio of post-

yield to pre-yield (elastic) stiffness and ( )z t  is a dimensionless hysteretic parameter 

obeying a single non-linear differential equation: 

 

 ( ) ( ) ( ) ( )( )( ) ( )1 n

y

z t A z t sign u t z t u t
u

γ β = − ⋅ ⋅ ⋅ + ⋅
 

� ��  (2) 

 

Where, , , ,A nβ γ  are dimensionless quantities controlling the behaviour of the 

model. In particular, small values of n  ( 0n > ) correspond to a smooth transition 

from the elastic to the plastic branch, whereas for large values of n  ( 10n > ) the 

transition becomes abrupt approaching that of a bilinear model. Parameter A  was 

introduced in the original paper, but later it became evident that it is redundant. 

Parameters ,β γ  control the size and shape of the hysteretic loop.  

 

If we denote 0K  as the initial stiffness, then the restoring force, expressed by 

equation (1), can be analysed into two springs connected in parallel; the first spring 

is the post-yielding spring and the second is the hysteretic spring, as shown in Figure 

1. The part of the force which corresponds to the hysteretic spring can be denoted as 

F ∗ .  

 

With suitably selected values of parameters ,β γ  the model can produce 

hysteretic loops with strain hardening, as shown for example in Sues et al. [9]. 

However, since these parameters do not have a physical meaning, it is preferable for 

engineering purposes to introduce a dedicated strain-hardening spring connected in 

parallel with the springs of Figure 1, as proposed for example by Sivaselvan and 

Reinhorn [7]. Therefore, herein we will only consider the case of strain-softening 

systems, which allows for further simplification of the model. 
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Figure 1: The restoring force analysed in a post-yielding and a hysteretic spring. 
 

For the case of strain-softening systems, some conditions such as the initial 

stiffness and the hysteretic yield force allow for the decrement of the parameters. In 

order to calculate the initial stiffness, we impose a small displacement u∆  into the 

system. From equation (1), the resulting restoring force can be written as: 

 

 ( ) ( )1 1
y y

y y

y y

F F
F a u a F z a u a F z

u u

 
∆ = ∆ ⋅ ⋅ + − ⋅ ⋅ = ⋅ ⋅∆ + − ⋅ ⋅∆ 

  
 (3) 

 

From the differential form of equation (2) by noting that nA z�  as the initial 

value of z  is zero, one obtains: 

 

 
y

A
z u

u
∆ = ∆  (4) 

 

Combining equations (3) and (4), the following relation is obtained: 

 

 ( )1
y

y

y y

F A
F a u a F u

u u
∆ = ⋅ ⋅∆ + − ⋅ ⋅ ∆  (5) 

 

The initial stiffness may be denoted as 
i

k F u= ∆ ∆ , therefore: 

 

 ( )1
y y

i

y y

F F
k a a A

u u
= ⋅ + − ⋅ ⋅  (6) 

 

From equation (6), it is evident that if the initial stiffness of the system is equal to 

0 y y
K F u= , then the parameter A  should be equal to 1. 
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In addition, the yield force of the hysteretic spring should be equal to 
y

F . For 

example, if we consider only the hysteretic spring (i.e. by setting 0a = ) when it has 

passed yielding, the restoring force is expressed as: 

 

 max maxy
F F z= ⋅  (7) 

 

From equation (7) it results that the parameters of the model should be chosen in 

such a way that max 1z = ± . Considering monotonic loading, the hysteretic spring 

yields and parameter z  takes its maximum value which remains constant. Therefore, 

( ) 0z t =�  and from equation (2) one obtains: 

 

 

( )

( ) ( ) ( )( )( )

0

0
n

u t

or

A z t sign u t z tγ β

 =  
 
 
− ⋅ ⋅ ⋅ + =  

�

�

 (8) 

 

Moreover, in the general case: 

 

 
( ) ( )( )

1

max

n
A

z
sign u t z tγ β

 
= ±  ⋅ ⋅ + �

 (9) 

 

In the case of monotonic loading, ( )u t�  and ( )z t  share the same sign. Therefore, 

from equation (9) and by noting that 1A =  and max 1z = ± , one obtains: 

 

 

1

1
1 1

n

γ β
γ β
 
= ⇒ + = + 

 (10) 

 

Moreover, when the hysteretic spring yields and parameter z  is constant, from 

equation (1) it is obtained: 

 

 ( )1
y y

y

y y

F F
F a u a F z a u

u u

 
∆ = ∆ ⋅ ⋅ + − ⋅ ⋅ = ⋅ ⋅∆ 

  
 (11) 

 

The post-yielding stiffness may be denoted as 
f

k F u= ∆ ∆ , therefore: 

 

 0

y

f

y

F
k a a K

u
= ⋅ = ⋅  (12) 
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Equation (12) is consistent with the physical meaning of a  as the ratio of post-

yield to pre-yield (elastic) stiffness. Therefore, the conditions 1A β γ= + =  allow 

for the simplification of the strain-softening model while providing consistency with 

the physical meaning of the chosen parameters. Moreover, this is achieved without 

any restrictions in the ability of the model to simulate hysteresis.  

 

2.2 Identification 
 

The identification of Bouc-Wen hysteretic systems poses a challenging problem. 

Many researchers have applied a variety of methods, such as genetic algorithms, 

differential evolution [11], extended Kalman filters, reduced gradient methods, 

Simplex methods [5], [9] etc.  

 

The performance of these methods, with respect to both efficiency and accuracy, 

is in most cases problematic for the broad spectrum of hysteretic models that predict 

the response of inelastic structures. Genetic algorithms provide a promising solution 

for the identification problem for two main reasons: first, GAs use only “payoff” 

data i.e. no derivative data, for the evolution of the population and second, they 

feature an inherent capability for massive parallel computing. In light of this, in this 

work a new variant genetic algorithm proposed by Koumousis an Katsaras [6], 

namely Sawtooth GA, is applied to the identification problem of a SDOF Bouc-Wen 

hysteretic system. 

 

3  Genetic Algorithms 
 

3.1 General 
 

Genetic algorithms (GAs) were introduced by John Holland at the University of 

Michigan in the 1960s. Holland’s introduction of generic algorithms was based on a 

population of chromosomes with crossover, inversion and mutation. Since then, 

many variations of GAs have been introduced and used successfully in many fields. 

Today, genetic algorithms together with evolution strategies and evolutionary 

programming form the field of evolutionary computation with a wide range of 

efficient solutions in many engineering problems. 

 

One of the most important applications of GAs is optimization. GAs are widely 

considered very good global optimizers that can quickly search a huge space and 

provide good candidate solutions in a reasonable amount of time. However, their 

performance in discovering the actual local or global optimum is limited; therefore, 

GAs are often coupled with a local optimizer, such as “steepest ascend” hill 

climbing etc., which takes over when the progress of the GA degrades. 

 

3.2 Saw-tooth GA 
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Recently, Koumousis and Katsaras [6] introduced a new genetic algorithm scheme 

that uses variable population size and partial reinitialization in a synergistic way to 

enhance performance. This approach was compared to standard or pure-GA and 

other GAs that use reinitialization of the population, such as the micro-GA or µ GA, 

first suggested by Goldberg [10], with very good results. 

 

The population size follows a predefined scheme, shown in Figure 2: 

 

 

Figure 2: Population variation scheme. 

 

The scheme is characterized by amplitude D  and period of variation T . Thus, at 

a specific generation t , the population size ( )n t  is determined as: 

 

 ( ) 2 1
int int 1

1

D t
n t n D t T

T T

 ⋅  −  = + − ⋅ − ⋅ −   −    
 (13) 

 

Where n  is the mean population size. From the parametric studies with a large 

testbed of unimodal and multimodal problems, it become evident that strong 

reinitialization of the population, i.e. large values of D n , was beneficial for the 

performance of the GA. Moreover, moderate periods with values of T n  (around 

0.50) seem to perform well [6]. 

 

4  Analysis 
 

4.1 Overview 
 

In this work, a set of identification analyses for the SDOF Bouc-Wen hysteretic 

system was performed. The analyses were based on simulated noise-free data for 

various levels of mass and viscous damping; the simplification 1A = , 1β γ= − , 

analyzed in paragraph 2.1, was made for all cases. The excitation used was the well-

known El Centro accelerogram. Depending on the mass and viscous damping, the 

response varied from nearly linear elastic to strongly non-linear with well-defined 

hysteretic loops. 
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In this study, the identification was performed as one-stage process, i.e. the full 

range of values of parameters was used for the whole analysis. In order to increase 

performance, a multi-stage process that gradually reduces the range of values can be 

designed. 

 

4.2 Response  
 

GAs require the evaluation of the fitness value of a large number of candidate 

solutions, i.e. chromosomes. This is accomplished by using a fast fourth order 

Runge–Kutta method with constant step in the integration of the equations of motion 

together with the non-linear equation for the hysteretic parameter. It was found that 

this method was sufficiently accurate because of the small time-step and the small 

demand for accuracy in the calculation of the fitness of a chromosome. However, a 

more accurate and expensive method, based on Livermore stiff ODE integrator, was 

also implemented for the calculation of the reference response and for comparison 

purposes with respect to the simple fourth order Runge–Kutta method. The 

differences were found to be negligible for all cases. 

 

4.3 Objective function  
 

In this study, the mean square error (MSE) of the predicted displacement as 

compared to the reference time history was used as an objective function. In general, 

the discrete normalized form of the MSE of a predicted time history ( )x̂ t  as 

compared to a reference time history ( )x t  can be expressed as: 

 

 ( )22
1

100
ˆ

i

n

i i

ix

MSE x x
n σ =

= ⋅ −
⋅ ∑  (14) 

 

Where, 2

x
σ  the variance of the reference time history and n  the number of points 

used. The reference displacement history of the SDOF model, i.e. the “correct” 

solution, was calculated for a known set of six parameters, namely γ , n , a , c , 
y

F , 

y
u . The candidate solutions were produced by sets of parameters between a lower 

and an upper bound. Therefore, the optimization problem can be stated as the 

minimization of MSE when each parameter 
i

P  is within the range specified by the 

following side constraints: 

 

 ,min ,maxi i i
P P P≤ ≤  (15) 

 

For some parameters, the range of values was chosen to be as wide as possible; 

for example a  i.e. the ratio of post-yield to pre-yield (elastic) stiffness was set to 

take values between 0 and 1, inclusively. For other parameters, such as 
y

u , the range 
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was set to be one or two orders of magnitude around the true value. The mass of the 

system was considered known. 

 

A minimum accuracy of 610−  was set for the predicted values of all parameters. 

The encoding length (in bits) for each parameter was calculated based on the range 

of values and the accuracy. Note that, on purpose, the range and accuracy were not 

chosen in such a way so as to produce a convenient 2k  search space. Therefore, the 

exact values of the parameters were not included in the search space.  

 

4.4 Selection, crossover and mutation scheme 
 

In order to avoid premature convergence of the GA, Koumousis and Katsaras [6] 

propose the use of elitism and tournament or rank selection scheme. The reason for 

this is that, in general, a population may include individuals with very different 

fitness values, especially when the amplitude D  is very big. These populations tend 

to be overrun very fast by the individuals with high fitness, thus degrading the 

performance of the GA. Therefore, a proper selection scheme, or another technique 

such as hypermutation is needed to avoid this phenomenon. In this work, however, 

the selection scheme used was the biased roulette wheel. It was observed that even 

fitness – proportionate selection schemes, such as the biased roulette wheel paired 

with elitism can perform well, provided that proper scaling of the fitness values 

takes place.  

 

In order to perform proper scaling, a large value, i.e. 6

max 10MSE = , was set as an 

upper bound for the MSE of chromosomes. The reason is twofold; first, it is not rare 

phenomenon to observe overflow of double precision variables during the 

calculation of the MSE. The overflow is captured by the error handler of the routine 

and the maximum value of MSE is assigned to the chromosome. Second, if the MSE 

of a chromosome nearly overflows the double data type, then after scaling, the 

fitness values of all other chromosomes are almost the same. This may lead to loss 

of promising chromosomes as they fail to produce offspring. Scaling was performed 

using the linear method proposed by Goldberg [12] with 2
mult

C = , where 
mult

C  is 

the desired number of expected copies for the best individual. 

 

A single-point crossover scheme with probability 0.7 was adopted. The mutation 

scheme included jump mutation with probability 1 N  and creep mutation with 

probability ( )bit parL N N , where N  is the current population size, 
bit

L  is the length 

of the chromosome in bits and 
par

N  is the number of parameters. 

 

4.5 Computational details 
 

For the purposes of the GA analysis, a long period (> 182 10⋅ ) random number 

generator of L’Ecuyer with Bays-Durham shuffle and added safeguards [13] was 
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used. The typical chromosome length was 132 bits. The population size followed a 

predefined saw-tooth scheme with mean value 25n = , amplitude 15D =  and period 

15T = .  

 

Three cases of mass were considered, with five cases of viscous damping each. 

Viscous damping was equal to 0%, 5%, 10%, 20% and 30% of critical value. Each 

of the 15 cases was run 100 times; each run evolved for 3000 generations, followed 

by hill climbing for the best individual. 

 

The following table (Table 1) presents the true values and the range of the 

parameters used in the GA analysis: 

 

Parameter 
True 

Value 

10
true

c <  10
true

c >  

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

γ  0.900 0.000 1.000 0.000 1.000 

n  2.000 1.000 10.000 1.000 10.000 

c  varies 0.000 10.000 10.000 20.000 

a  0.100 0.000 1.000 0.000 1.000 

y
F  2.860 0.100 10.000 0.100 10.000 

y
u  0.111 0.001 1.000 0.001 1.000 

 

Table 1: True values and range of parameters. 

 

4.6 Software 
 

For the purposes of this study, a custom computer program with full graphical 

interface and a GA library was developed. The software, shown in Figure 3, allowed 

visual inspection of the progress of the analysis and produced a full log for further 

processing. 
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Figure 3: Screenshot of developed software 

 

5  Results 
 

 

5.1 Reduced set of parameters 
 

The following tables summarize the predicted parameters for the best individual 

of all 100 runs: 

 

Parameter 0.0000c =  0.8585c =  1.7169c =  3.4338c =  5.1507c =  

γ  0.924316 0.968751 0.812500 0.875000 0.937500 

n  2.125000 2.037659 1.984375 1.914062 2.054688 

c  0.039673 0.781249 1.728515 3.417663 5.161133 

a  0.103516 0.101562 0.093749 0.090317 0.109375 

y
F  2.835431 2.797363 2.818928 2.923047 2.840869 

y
u  0.110510 0.108557 0.108375 0.113192 0.110754 

 

Table 2: Predicted values of parameters for case I (m=2.86) 

 

Parameter 0.0000c =  1.9195c =  3.8390c =  7.6780c =  11.5170c =  

γ  0.976563 0.703125 0.898438 0.861328 0.906250 

n  2.085655 1.914063 1.958007 1.914062 2.019531 

c  0.000000 2.187500 3.750000 7.623291 11.532879 

a  0.101563 0.107422 0.097167 0.097655 0.102882 

y
F  2.894043 2.700382 2.884375 2.889209 2.840869 

y
u  0.113496 0.102704 0.111240 0.111640 0.110265 
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Table 3: Predicted values of parameters for case II (m=14.3) 

 

Parameter 0.0000c =  2.7146c =  5.4292c =  10.8584c =  16.2875c =  

γ  0.921875 0.859375 1.000000 0.812501 0.968995 

n  2.125000 2.072265 2.177185 1.914062 2.018982 

c  0.097656 2.890625 5.625000 10.879517 16.250000 

a  0.101563 0.101563 0.102142 0.097961 0.097655 

y
F  2.836186 2.803783 2.865039 2.826367 2.923047 

y
u  0.111057 0.108740 0.113802 0.108307 0.114168 

 

Table 4: Predicted values of parameters for case III (m=28.6) 

 

The following tables summarize the error in the prediction of the parameters for 

the best individual of all 100 runs: 

 

Parameter 0c =  0.05
cr

c c= ⋅  0.10
cr

c c= ⋅  0.20
cr

c c= ⋅  0.30
cr

c c= ⋅  

γ  2.702% 7.639% 9.722% 2.778% 4.167% 

n  6.250% 1.883% 0.781% 4.297% 2.734% 

c  - 8.998% 0.677% 0.470% 0.203% 

a  3.516% 1.562% 6.251% 9.683% 9.375% 

y
F  0.859% 2.190% 1.436% 2.204% 0.669% 

y
u  0.442% 2.200% 2.365% 1.974% 0.222% 

 

Table 5: Error (%) in the prediction of parameters for case I (m=2.86) 

 

Parameter 0c =  0.05
cr

c c= ⋅  0.10
cr

c c= ⋅  0.20
cr

c c= ⋅  0.30
cr

c c= ⋅  

γ  8.507% 21.875% 0.174% 4.297% 0.694% 

n  4.283% 4.297% 2.100% 4.297% 0.977% 

c  - 13.962% 2.318% 0.713% 0.138% 

a  1.563% 7.422% 2.833% 2.345% 2.882% 

y
F  1.190% 5.581% 0.852% 1.021% 0.669% 

y
u  2.249% 7.474% 0.217% 0.576% 0.662% 

 

Table 6: Error (%) in the prediction of parameters for case II (m=14.3) 

 

Parameter 0c =  0.05
cr

c c= ⋅  0.10
cr

c c= ⋅  0.20
cr

c c= ⋅  0.30
cr

c c= ⋅  
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γ  2.431% 4.514% 11.111% 9.722% 7.666% 

n  6.250% 3.613% 8.859% 4.297% 0.949% 

c  - 6.484% 3.606% 0.194% 0.230% 

a  1.563% 1.563% 2.142% 2.039% 2.345% 

y
F  0.833% 1.966% 0.176% 1.176% 2.204% 

y
u  0.052% 2.036% 2.525% 2.426% 2.854% 

 

Table 7: Error (%) in the prediction of parameters for case III (m=28.6) 

 

The following table (Table 8) summarizes the MSE for the best individual of all 

100 runs for each case: 

 

 0c =  0.05
cr

c c= ⋅  0.10
cr

c c= ⋅  0.20
cr

c c= ⋅  0.30
cr

c c= ⋅  

2.86m =  0.014390% 0.044956% 0.016365% 0.001775% 0.001615% 

14.3m =  0.005248% 0.026854% 0.004543% 0.002519% 0.000335% 

28.6m =  0.003343% 0.003093% 0.003270% 0.000871% 0.002052% 

 

Table 8: MSE (%) of the best individual for all cases 

 

From the above it is evident that, although the predicted values of the parameters 

may differ from the true values considerably, the GA was always able to find sets of 

parameters with very low MSE (lower than 0.05%). The response graph of these 

chromosomes almost coincides with the reference graph. This phenomenon can be 

attributed to the fact that changes in different parameters can produce similar change 

in the whole response, depending on the excitation and the characteristics of the 

model.  

 

Taking into consideration the wide range of the parameters, the predicted values 

were consistently close to the true values. One can notice that parameter a  (ratio of 

post-yield to elastic stiffness), yield force 
y

F  and yield displacement 
y

u , are better 

identified in case III which produces the more well-defined hysteretic loops. This is 

expected since these parameters are related to geometric properties of the hysteretic 

loop. 

 

5.2 Full set of parameters 
 

In order to demonstrate the redundancy of the parameters, a set of analyses was 

conducted for case I (m=2.86) and five cases of viscous damping, taking into 

consideration the full set of parameters. Parameter A  was set to take values between 

0.1 and 100.0 inclusively while parameter β  was set to take values between 0.0 and 

1.0, inclusively. The population size followed a modified saw-tooth scheme with 
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mean value 50n = , amplitude 40D =  and period 25T = . All other options were 

held the same as the ones used for the analyses of the reduced set of parameters. 

 

The following table summarizes the predicted parameters for the best individual 

of all 100 runs: 

 

Parameter 0.0000c =  0.8585c =  1.7169c =  3.4338c =  5.1507c =  

A  68.781 85.513 53.660 57.859 2.865 

β  0.069 0.125 0.133 0.098 0.062 

γ  0.594 0.469 0.705 0.532 0.779 

n  1.984 2.195 1.967 1.956 2.195 

c  0.001 0.957 1.746 3.438 5.234 

a  0.894 0.913 0.839 0.858 0.236 

y
F  2.287 2.913 1.986 1.809 1.896 

y
u  0.727 0.943 0.725 0.633 0.179 

MSE  0.051 % 0.053 % 0.013 % 0.001 % 0.008 % 

 

Table 9: Predicted values of parameters for case I (m=2.86) (full set of parameters) 

 

From the above it is evident that, again, the GA was able to find sets of 

parameters with very low MSE. However, the predicted values of the parameters 

may be significantly different from the true values. In most cases, a large value of a  

(ratio of post-yield to pre-yield stiffness) was found; in this case, the response of the 

system approached that of the equivalent linear oscillator.  

 

6  Conclusions 
 

A Genetic Algorithm called Sawtooth GA was applied to the demanding task of the 

identification of a generic Bouc-Wen hysteretic system. The GA combines variable 

population size and periodic partial reinitialization of the population to enhance 

performance. It is also coupled with a local optimizer based on the “steepest ascend” 

hill climbing method. 

 

It was shown that the initial form of the hysteretic system can be simplified by 

plausible assumptions based on the physical meaning of the parameters. The 

identification process was implemented with the reduced set of six parameters. 

Although the range of the parameters was very wide, the GA was able to produce 

very good solutions in a small amount of time.  

 

During the calculations, it was observed that the performance of Sawtooth GA 

was similar to micro GA. Both methods were far superior to standard GA. However, 

the performance of the GA is encumbered because of the big chromosome length. A 
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multi-stage identification scheme that gradually narrows down the ranges of the 

parameters would facilitate further the identification process.  
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